←to practical programming

Homework "Adaptive Integration"

  1. (6 points) Recursive adaptive integrator

    Implement a recursive open-quadrature adaptive integrator that estimates the integral of a given function f(x) on a given interval [a,b] with the required absolute, δ, or relative, ε, accuracy goals.

    The integrator has to use a combination of a higher order quadrature and an imbedded lower order quadrature (to estimate the local error).

    Something like

    static double integrate
    (Func<double,double> f, double a, double b,
    double δ=0.001, double ε=0.001, double f2=NaN, double f3=NaN)
    {
    double h=b-a;
    if(IsNaN(f2)){ f2=f(a+2*h/6); f3=f(a+4*h/6); } // first call, no points to reuse
    double f1=f(a+h/6), f4=f(a+5*h/6);
    double Q = (2*f1+f2+f3+2*f4)/6*(b-a); // higher order rule
    double q = (  f1+f2+f3+  f4)/4*(b-a); // lower order rule
    double err = |Q-q|;
    if (err ≤ δ+ε|Q|) return Q;
    else return integrate(f,a,(a+b)/2,δ/√2,ε,f1,f2)+
                integrate(f,(a+b)/2,b,δ/√2,ε,f3,f4);
    }
    

    Remember to reuse points!

    Test your implementation on some interesting integrals, for example (check the expressions before using),

    01 dx √(x) = 2/3 ,
    01 dx 1/√(x) = 2 ,
    ∫01 dx 4√(1-x²) = π ,
    ∫01 dx ln(x)/√(x) = -4
    

    Check that your integrator returns results within the given accuracy goals.

    Using your integrator implement the error function via its integral representation,

             | -erf(-z)                            , if z<0
    erf(z) = | 2/√π 0z dx exp(-x²)                 , if 0≤z≤1
             | 1-2/√π 01 dt exp(-(z+(1-t)/t)²)/t/t , if 1<z
    
    make a plot, compare with exact results. Can you obtain better accuracy than our approximation from the plot exercise?
  2. (3 points) Open quadrature with Clenshaw–Curtis variable transformation

    • Inplement an (open quandrature) adaptive integrator with the Clenshaw–Curtis variable transformation,

    -11 f(x)dx = ∫0π f(cos(θ))sinθdθ  
    
    abdx f(x) = ∫0πdθ f( (a+b)/2+(b-a)/2*Cos(θ) )*Sin(θ)*(b-a)/2
    

    • Calculate some integrals with integrable divergencies at the end-points of the intervals; record the number of integrand evaluations; compare with your ordinary integrator without variable transformation. For example,

    01 dx 1/√(x) = 2 ,
    01 dx ln(x)/√(x) = -4 .
    

    • Compare the number of integrand evaluations with the python/numpy's integration routines.

    Hint:

    int ncalls=0;
    Func<double,double> f = z => {ncalls++;return z*z;};
    
  3. (1 point) Error estimate and infinite limits

    • Make your integrator estimate and return the integration error.

    • Generalize your integrator to accept infinite limits. An infinite limit integral can be converted by a variable transformation (see lecture notes) into a finite limit integral, which can then be evaluated by your integrator.

    Hints: double.PositiveInfinity, IsInfinity, IsNegativeInfinity, IsPositiveInfinity.

    • Test your implementation on some (converging) infitine limit integrals and note the number of integrand evaluations.

    • Compare with the python/numpy integration routines.